

Modellierung der Wechselwirkung reaktiver Ionenstrahlen mit Aluminium

Workshop in Mühlleithen "Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen, – 06.-09. März 2017

J. Bauer, F. Frost, T. Arnold

Formgebung von Al-Optiken

 RIBE vielversprechend für Al-Oberflächenbearbeitung
 → moderater Rauheitsanstieg gegenüber IBF mit Ar Bearbeitungsmodell: vorantreibende Ätzfront, die die Oberflächenbeweglichkeit und Realstruktureinflüsse verringert

→ RIBE-Prozess ohne flüchtige, chemische Reaktionsspezies Bestehende Probleme:

- Ätzgrubendefekte durch
 Gefügestruktur verursacht
 → in Al905 deutlich
 vermindert gegenüber Al6061
- Geringe Ätzgeschwindigkeit

Ionenstrahl-Wechselwirkung mit dem Al-Substrat Zusammensetzungsanalyse

SIMS-Tiefenprofile

- ✓ Oxiddicke nach Ar-IBF entspricht unbearbeitetem Al → native Oxidschicht (instantane Bildung bei Kontakt mit Luft)
- Oxiddicke unabhängig von der Prozessdauer

Prozess	R _q @ 50-1000 nm	Oxiddicke
unbearbeitet	4,0 nm	5,7 nm
Ar	13,8 nm	7,3 nm
Ar/O ₂	13,1 nm	11,3 nm
02	6,9 nm	13,0 nm

Ionenstrahl-Wechselwirkung mit dem Al-Substrat Monte Carlo-Simulation

TRIM.SP: Simulation der
 Ionentrajektorien im Substrat &
 des Zerstäubungsprozesses

O₂-Prozessierung: Anfangsstadium

 O⁺-Ionen dringen in die native Oxidschicht und Al-Volumenmaterial ein
 → Oxiddicke dehnt sich aus

J. Bauer, F. Frost, Th. Arnold: J. Phys. D 50 (2017) 085101

Ionenstrahl-Wechselwirkung mit dem Al-Substrat

O₂-Prozessierung: quasi-stationäres Prozessstadium

 vollständige O+-Ionenimplantation in der gebildeten Oxidschicht

IŐM

Ionenstrahl-Wechselwirkung mit dem Al-Substrat

- Sputterabtrag innerhalb des 1 nm oberflächennahen Bereichs
- Sputterausbeute \rightarrow hoher O-Gehalt an der Oxidoberfläche
- ✓ Y₀≈1 → quasi-stationäres Materialgleichgewicht zwischen Implantation und Sputterabtrag

Einfluss der Mikrorauheit auf die Prozessstabilität

Mikrorauheit << Oxiddicke

homogene Oxidbedeckung
 RIBE-Prozess rauheitserhaltend

Mikrorauheit ≥ Oxiddicke

- geringe Oxiddicke an Gradienten
- Al-Direktzerstäubung im Bereich der Gradienten
 - \rightarrow Al-Ausbeute um Faktor 6 höher
 - (+geometrischer Ausbeutezuwachs)
 - \rightarrow Oxid wirkt teilmaskierend
- → Rauheitszunahme im RIBE-Prozess

Einfluss der RIBE-Parameter auf die Oxiddicke

TRIM.SP: Oxiddicke = Implantationstiefenbereich, der 99,5% der einfallenden O⁺-Ionen umfasst

Oxiddicke steigt mit der Ionenenergie

RIBE-Prozess ab 1000 eV für übliche

gedrehte Oberflächen ($R_q < 10 \text{ nm}$)

rauheitserhaltend

Ionenenergie

Einfallswinkel (zur Normalen)

- Oxiddicke sinkt mit zunehmendem Einfallswinkel
- RIBE-Prozess bis 60° für übliche gedrehte Oberflächen (R_q < 10 nm) rauheitserhaltend

1 Ø M

RIBE von Al mit O₂-Prozessgas

Zweistufiger Prozess:

- Anfangsstadium: expandierende Oxiddicke bis zu einer Dicke von 12-15 nm
- quasi-stationäres Stadium: konstante
 Oxidschichtdicke & Ätzgeschwindigkeit

Vorteile der Prozessführung:

- RIBE ohne flüchtige Spezies möglich
- Oxid hemmt Al-Oberflächenbeweglichkeit
- Oxid passiviert Struktur- und Kompositionsinhomogenitäten des Al-Matrixmaterials
- Ausgangsstruktur der Oberflächen wird in die Tiefe übertragen

Offene Punkte:

- Ätzgrubenbildung
- Oberflächenschicht kann die optischen
 Oberflächeneigenschaften verändern
- ✓ Implantationstiefe nimmt bei geringerer Ionenenergie und unter geneigtem Einfallswinkel ab → Berücksichtigung bei Planarisierung & Strukturübertrag
- Prozess auch mit anderen Prozessgasen möglich?

RIBE-Bearbeitung mit N₂-Prozessgas

- RIBE mit N₂: 11 nm dicke Nitridschicht (SIMS)
 - Ausgangsrauheit bleibt weitestgehend erhalten
 - bis 1 µm Abtragstiefe nachgewiesen
- Ätzgeschwindigkeiten: $R(O_2)=0,172 \text{ mm}^3/\text{h}$ $R(N_2)=0,479 \text{ mm}^3/\text{h}$ $R(Ar)=0,894 \text{ mm}^3/\text{h}$

Rauheit vs. Ionenengie – N₂-Prozess

Variation der Ionenenergie

Zeitverhalten bei 900 eV

Formfehlerkorrektur nach dem Diamantdrehen

Oberflächenform

Zielstellung:

- Teilkorrektur der Drehform durch Abtrag in Paraboloid-Form
- Überlagerung zweier linearer Parabelabtragsprofile (Kreuzbearbeitung)
- 🕖 100 nm Mittenkorrektur

Paraboloid-Abtragsform

Zeilengeschwindigkeit in der Bauteilmitte langsamer

Formfehlerkorrektur nach dem Diamantdrehen

ΙϭΜ

Formfehlerkorrektur nach dem Diamantdrehen

tatsächlicher Abtrag entspricht Verweilzeitsimulation

Asymmetrie im Randbereich durch quadratische Scanfeldgeometrie

Zusammenfassung & Ausblick

- ✓ Rauheitserhaltende RIBE-Bearbeitung von Al-Oberflächen untersucht
 → Abtragsgeschwindigkeit ca. 20% (O₂) bzw. 50% (N₂) zu Ar-IBF
 → moderate Rauheitszunahme gegenüber IBF mit Ar
- Bearbeitungsmodell: vorantreibende Ätzfront, die durch Ionenimplantation und Abtrag dynamisch stabilisiert wird
- Prozessfähigkeitsnachweis für 1 μm Zielbearbeitungstiefe (N₂ & O₂)
- **Formgebung mit N₂-Prozess** mittels Verweilzeittechnik

Herzlichen Dank für die Aufmerksamkeit!

Danksagung

- A. Gebhard, R. Steinkopf (IOF Jena)
- I. Herold, T. Liebeskind (IOM)
- F. Pietag (IOM)
- D. Hirsch (IOM)
- A. Nickel (IOM)

"ULTRAPRÄZISIONSBEARBEITUNG MIT ATOMAREN TEILCHENSTRAHLEN"

